Abstract

The CD-1 mouse is a commonly used animal model to understand the biological effects of early-life exposure to soy isoflavones in infants. Most studies using CD-1 mice have administered isoflavones by daily subcutaneous injection, while infants receive oral feeds every few hours. The study objectives were to compare the total serum levels of genistein (GEN), daidzein (DAI) and the DAI metabolites equol and O-desmethyl-angolensin (O-DMA), after subcutaneous injection and oral dosing and to determine if frequency of oral administration results in different circulating levels of isoflavones using the CD-1 mouse model. From postnatal days 1 to 5, pups randomly received corn oil or soy isoflavones (total daily dose, 0.010 mg DAI+0.025 mg GEN) by subcutaneous injection once a day, orally once a day or orally every 4 hours. On postnatal day 5, 1 h posttreatment, mice were killed and serum was collected. Mice treated with soy isoflavones had higher (P<.05) serum GEN (female: 1895–3391 ng/ml and male: 483–578 ng/ml) and DAI (female: 850–1580 ng/ml and male: 248–322 ng/ml) concentrations versus control (5–20 ng/ml) mice, regardless of route or frequency of administration, and were similar among dosing strategies. Total serum concentrations of GEN and DAI were higher (P<.05) among females (GEN: 2714 ± 393 ng/ml and DAI: 1205 ± 164 ng/ml) than males (GEN: 521 ± 439 ng/ml and DAI: 288 ± 184 ng/ml) across treatment groups. Serum equol and O-DMA concentrations were negligible (<3 ng/ml) across groups. In conclusion, different routes of delivery and frequency of administration resulted in similar total serum levels of GEN, DAI¸ equol or O-DMA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call