Abstract
Immunotherapy has emerged as a promising strategy against tumors. However, its efficacy is limited by low immunogenicity, poor antigen presentation, and inadequate lymphocyte infiltration. Herein, we develop a nanoplatform (Mn-HSP) loaded with manganese ions (Mn2+) and paclitaxel (PTX) prodrug based on hyaluronic acid. PTX in Mn-HSP induces DNA damage and pyroptosis to release tumor-associated antigens (TAAs), enhancing tumor-specific adaptive immunity. Meanwhile, Mn2+ in Mn-HSP, together with PTX-induced DNA damage, activates the stimulator of interferon gene (STING) pathway to amplify innate immunity. Mn-HSP combines with adaptive and innate immunity, effectively enhancing the presentation of antigen-presenting cells (APCs) and promoting tumor infiltration of cytotoxic T lymphocytes (CTLs). In turn, the granzyme B (GZMB) secreted by CTLs triggers pyroptosis again, thereby establishing a “circulating immunotherapy” against tumors. Our results demonstrate that Mn-HSP efficiently inhibits primary breast tumors, as well as rechallenge tumors and lung metastasis in vivo. Therefore, the circulating immunotherapy that combines pyroptosis mediated adaptive immunity and STING pathway amplified innate immunity provides a novel strategy for enhancing tumor immunotherapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.