Abstract

AimPoly (ADP-ribose) polymerase (PARP) inhibitors have emerged as a novel treatment option in BRCA-mutated ovarian cancer (OC); however, responses are variable and there is a lack of prognostic and predictive biomarkers. We therefore investigated whether homeobox A9 (HOXA9) promoter methylation in circulating tumour DNA (meth-ctDNA) can serve as a biomarker in patients with platinum-resistant BRCA-mutated OC, undergoing treatment with a PARP inhibitor. MethodsPatients (n = 32) were enrolled as part of a phase II trial testing veliparib in platinum-resistant BRCA-mutated OC. HOXA9 meth-ctDNA was determined at baseline and just before each treatment cycle using digital droplet polymerase chain reaction. Methylation status and change in methylation compared with baseline were correlated with overall survival (OS) and progression-free survival (PFS). ResultsDetection of HOXA9 meth-ctDNA during treatment with a PARP inhibitor was associated with worse clinical outcomes. This association was apparent after the first cycle of treatment and maintained throughout treatment. After three treatment cycles, patients with detectable HOXA9 meth-ctDNA had a median PFS of 5.1 months compared with 8.3 months for patients without, and a median OS of 9.5 months compared with 19.4 months (p < 0.0001 and p = 0.002, respectively). Patients with detectable HOXA9 meth-ctDNA at baseline, but subsequent undetectable levels, had the most favourable clinical outcome, followed by patients with undetectable levels throughout. These associations were maintained in multivariate analysis. ConclusionsLongitudinal monitoring of HOXA9 meth-ctDNA is clinically feasible and is strongly correlated to clinical outcomes (PFS, OS), suggesting that it may serve as a valuable predictive biomarker to inform clinical decision-making in the setting of platinum-resistant BRCA-mutated OC treated with a PARP inhibitor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.