Abstract

BackgroundThe intestinal stem cells (ISC) modulation and the role of circulating hematopoietic stem cells (HSC) in coeliac disease (CD) are poorly understood. Our aim was to investigate the longitudinal modifications in peripheral blood HSC traffic and putative ISC density induced by gluten-free diet (GFD) in CD.MethodsThirty-one CD patients and 7 controls were enrolled. Circulating CD133+ and CD34+ HSC were measured by flow cytometry, at enrolment and after 7 days and 1, 3, 6, 12, and 24 months of GFD. Endoscopy was performed at diagnosis and repeated at 6, 12, and 24 months following GFD. We used the Marsh-Oberhuber score to evaluate the histological severity of duodenal damage; immunohistochemistry was employed to measure the intraepithelial lymphoid infiltrate (IEL, CD3+ lymphoid cells) and the putative ISC compartment (CD133+ and Lgr5+ epithelial cells).ResultsAt enrolment, circulating HSCs were significantly increased in CD patients and they further augmented during the first week of GFD, but progressively decreased afterwards. CD patients presented with villous atrophy, abundant IEL and rare ISC residing at the crypt base. Upon GFD, IEL progressively decreased, while ISC density increased, peaking at 12 months. After 24 months of GFD, all patients were asymptomatic and their duodenal mucosa was macroscopically and histologically normal.ConclusionsIn active CD patients, the ISC niche is depleted and there is an increased traffic of circulating HSC versus non-coeliac subjects. GFD induces a precocious mobilization of circulating HSC, which is followed by the expansion of the local ISC compartment, leading to mucosal healing and clinical remission.

Highlights

  • The intestinal stem cells (ISC) modulation and the role of circulating hematopoietic stem cells (HSC) in coeliac disease (CD) are poorly understood

  • Despite the pathogenic interactions among genetic, immunological, and environmental factors in CD have been extensively investigated, little is known about intestinal stem cell (ISC) modulation and deregulation during the disease course and about the possible contribution of circulating bone marrow-derived stem cells to intestinal regeneration upon the commencement of a gluten-free diet (GFD)

  • Aim of this study was to assess the circulating hematopoietic stem cells (HSC) traffic and putative ISC (CD133+/leucine-rich repeat–containing G-protein–coupled receptor-5 (Lgr5)+ crypt cell) density in active CD patients and to investigate their longitudinal modifications induced by GFD

Read more

Summary

Introduction

The intestinal stem cells (ISC) modulation and the role of circulating hematopoietic stem cells (HSC) in coeliac disease (CD) are poorly understood. Our aim was to investigate the longitudinal modifications in peripheral blood HSC traffic and putative ISC density induced by gluten-free diet (GFD) in CD. Despite the pathogenic interactions among genetic, immunological, and environmental factors in CD have been extensively investigated, little is known about intestinal stem cell (ISC) modulation and deregulation during the disease course and about the possible contribution of circulating bone marrow-derived stem cells to intestinal regeneration upon the commencement of a GFD. Aim of this study was to assess the circulating hematopoietic stem cells (HSC) traffic and putative ISC (CD133+/Lgr5+ crypt cell) density in active CD patients and to investigate their longitudinal modifications induced by GFD

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call