Abstract

A model has been developed considering the hydrodynamic behaviour of a turbulent circulating fluidized bed, the kinetic of coal combustion and sulphur retention in the riser. The hydrodynamic characteristics of the turbulent fluidization regime were integrated together with the kinetic submodels of char combustion and sulphur retention by limestone. From the combustion of a lignite and an anthracite with limestone addition in a hot CBF pilot plant of 20 cm internal diameter and 6.5 m high, the effect of operating conditions such as temperature, excess air, air velocity, Ca/S molar ratio, coal and limestone particle size distributions on carbon combustion efficiency and sulphur retention were studied. The experimental results were compared with those predicted by the model and a good correlation was found for all the conditions used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.