Abstract
CD4+ Tcells undergo immunometabolic activation to mount an immunogenic response during experimental autoimmune myocarditis (EAM). Exosomes are considered key messengers mediating multiple Tcell functions in autoimmune responses. However, the role of circulating exosomes in EAM immunopathogenesis and CD4+ Tcell dysfunction remains elusive. Our objective was to elucidate the mechanism of action for circulating exosomes in EAM pathogenesis. We found that serum exosomes harvested from EAM mice induced CD4+ Tcell immunometabolic dysfunction. Treatment with the exosome inhibitor GW4869 protected mice from developing EAM, underlying that exosomes are indispensable for the pathogenesis of EAM. Furthermore, by transfer of EAM exosomes, we confirmed that circulating exosomes initiate the Tcell pathological immune response, driving the EAM pathological process. Mechanistically, EAM-circulating exosomes selectively loaded abundant microRNA (miR)-142. We confirmed methyl-CpG binding domain protein 2 (MBD2) and suppressor of cytokine signaling 1 (SOCS1) as functional target genes of miR-142. The miR-142/MBD2/MYC and miR-142/SOCS1 communication axes are critical to exosome-mediated immunometabolic turbulence. Moreover, the invivo injection of the miR-142 inhibitor alleviated cardiac injury in EAM mice. This effect was abrogated by pretreatment with EAM exosomes. Collectively, our results indicate a newly endogenous mechanism whereby circulating exosomes regulate CD4+ Tcell immunometabolic dysfunction and EAM pathogenesis via cargo miR-142.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Molecular therapy : the journal of the American Society of Gene Therapy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.