Abstract

ObjectiveEssential metals play important roles in the carcinogenic process. However, seldom longitudinal investigations have evaluated their roles in lung cancer development. We aimed to investigate the associations between multiple essential metals and lung cancer incidence and to explore the potential mechanisms. MethodsA nested case-control study of 440 incident lung cancer cases and 1:3 frequency matched 1320 healthy controls from the Dongfeng-Tongji Cohort was conducted. The baseline plasma concentrations of 11 essential metals (cobalt, copper, iron, manganese, molybdenum, rubidium, selenium, strontium, stannum, vanadium, and zinc) were measured, and their associations with lung cancer incidence were estimated. Effect of positive metal (zinc) on 4-year telomere attrition was then evaluated among an occupational cohort of 724 workers. We also assessed the transcriptional regulation effects of plasma zinc on mRNA expression profiles, and the expressions of zinc-related genes were further compared in pair-wised lung tumor and normal tissues. ResultsElevated plasma level of zinc was associated with lower incident risk of lung cancer [OR (95% CI) = 0.89 (0.79, 0.99)] and decreased 4-year telomere attrition [β (95% CI) = −0.73 (−1.27, −0.19)]. These effects were pronounced among males. In particularly, zinc could regulate the expressions of 8 cancer-related genes, including SOD1, APE, TP53BP1, WDR33, LAPTM4B, TRIT1, HUWE1, and ZNF813, which were over-expressed in lung tumor tissues. ConclusionsWe propose that high plasma zinc could prevent incident lung cancer, probably by slowing down telomere attrition and regulating the expressions of cancer-related genes. These results provided a new insight into lung cancer prevention.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call