Abstract

Endothelial progenitor cells (EPCs) play important roles in maintaining endothelial integrity and tumor vascularization. However, the differentiation of EPCs in the neoangiogenesis of gliomas has not yet been fully elucidated. The purpose in this study was to investigate the profile of EPC differentiation in rat C6 glioma using magnetic resonance imaging (MRI), a non-invasive monitoring assay. To achieve this goal, we isolated EPCs from rat bone marrow and identified them by detecting CD34, CD133, and VEGFR-2, the markers of EPCs. Coexpression of Ac-LDL and UEA-1 in EPCs was also determined. To dynamically monitor the migration of circulating cells, the EPCs were labeled with ultrasmall superparamagnetic iron oxide(USPIO) and injected by tail vein into rats bearing C6 glioma. MRI was performed at 24, 48, and 96h after injection. The distribution and differentiation of EPCs were confirmed by histology. We found that the USPIO-labeled EPCs appeared at the tumor periphery where a large number of CD105-positive cells appeared at 24h after injection by using MRI scanning. Ninety-six hours after injection, immunohistochemistry and Prussian blue staining were used to observe the labeled EPCs in the tumor tissue. We found that many of the labeled EPCs were overlapped with VEGFR-2-positive endothelial cells, but not CD105- or CD34-positive cells. These results suggest that EPCs can cross the blood-brain barrier from peripheral blood and home to tumors, where they differentiate into endothelial cells, including VEGFR-2-positive endothelial cells. MRI is a useful method for dynamically tracking the migration of USPIO-labeled EPCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.