Abstract
Background & Aims: Bile salt–dependent lipase (BSDL) has been detected in human blood, where it is assumed to play a substantial role in atherosclerosis. The origin of this circulating enzyme is unknown. The aim of this study was to show that blood BSDL originates from pancreatic exocrine secretions via a transcytotic motion across the intestinal epithelium. Methods: Fluorescein isothiocyanate– or [ 125I]-labeled human pancreatic BSDL was instilled into the lumen of intestinal loops of the rat, and combined biochemical and immunocytochemical investigations were performed in intestinal cells and in the blood of these animals. Results: In vivo pancreatic BSDL is internalized by duodenal enterocytes. The pancreatic enzyme was associated with microvilli and present in endocytic vesicles and Golgi apparatus as well as along the basolateral membrane of enterocytes. It was also detected in intestinal interstitial spaces. Radiolabeled pancreatic BSDL internalized by the duodenal epithelium is the one further detected in circulation. The radiolabeled protein was immunoprecipitated from plasma and had a 100-kilodalton molecular mass compatible with native pancreatic BSDL. In blood, BSDL was mainly associated with low-density lipoproteins. Conclusions: These in vivo data show that BSDL, normally present in blood, originates from exocrine pancreatic secretion and support the pathophysiologic relevance of BSDL transcytosis through the intestinal mucosa cell lining. Based on this, the implication of circulating BSDL in atherosclerosis merits careful attention.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.