Abstract

A mixture consisting of a nematic acrylate and a chiral diacrylate lightly doped with Exalite 428, a laser dye, was prepared into thin films for in situ photopolymerization. The laser dye served to regulate the photocuring intensity profile into the film and as a light emitter. With optimized chemical composition, photocuring intensity, and temperature, a gradient-pitch film with a broad resonance band was produced to cover the emission peak of the laser dye. The SEM image provided new insight into the distribution of pitch length across the film thickness, consistent with the selective reflection spectra. Upon UV excitation, the observed sense and degree of circularly polarized photoluminescence were qualitatively interpreted on the basis of the photoexcitation intensity received by the dopant molecules and by the wavelength-dependent interaction of emitted light with an asymmetric structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.