Abstract

It is highly challenging to achieve circularly polarized luminescence (CPL) switching by precisely tuning supramolecular interactions and unveiling the mechanism of supramolecular chirality inversion. Herein, we demonstrated CPL switching based on diethyl l-glutamate-9-cyanophenanthrene (LGCP) and diethyl l-glutamate-pyrene (LGP) via the precise regulation of supramolecular interactions. LGCP assembly driven by hydrogen bonding showed right CPL, while LGP assembly driven by π-π interaction led to left CPL. Remarkably, significant CPL switching was observed from the assemblies of LGCP/octafluoronaphthalene (OFN), attributed to the alteration of the dominating interaction from weak hydrogen bonding to rather strong π-π interaction, while the assemblies of LGP/OFN exhibited minimum CPL variation because the dominating π-π interaction within the assembly of LGP/OFN illustrated quite limited variations upon arene-perfluoroarene interaction. This work provides a feasible strategy toward the efficient modulation of the chiroptical properties of multiple component supramolecular systems, meanwhile offering possibilities for the mechanism exploration of the chirality inversion of supramolecular assemblies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call