Abstract

Circularly polarized luminescent (CPL) materials are promising in applications such as 3D displays and quantum communication. Hybrid organic-inorganic copper(I) iodides have been rapidly developed due to their intense photoluminescence and structural diversity; nevertheless, the reported Cu-I clusters rarely show CPL activities. In this study, we introduced chiral organic molecules R/S-methylbenzylammonium (R/S-MBA) into Cu-I inorganic skeletons to achieve chiral tetranuclear (R/S-MBA)4Cu4I4 clusters with intense orange luminescence and CPL activity at room temperature. These enantiomeric (R/S-MBA)4Cu4I4 clusters show oppositely signed circular dichroism (CD) signals, which agree well with their simulated electronic CD spectra. The crystallization-induced helical arrangement of (R/S-MBA)4Cu4I4 clusters and their largely distorted polynuclear configuration demonstrate a new platform for the study of chiral-related properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.