Abstract

The paper applies a one-to-one correspondence which exists between individual Schrödinger perturbation terms and the diagrams obtained on a circular scale of time to whole sets of the Schrödinger terms belonging to a definite perturbation order. In effect the diagram properties allowed us to derive the recurrence formulae giving the number of higher perturbative terms from the number of lower order terms. This recurrence formalism is based on a complementary property that any perturbation order N can be composed of two positive integer components Na , Nb combined into N in all possible ways. Another result concerns the degeneracy of the perturbative terms. This degeneracy is shown to be only twofold and the terms having it are easily detectable on the basis of a circular scale. An analysis of this type demonstrates that the degeneracy of the perturbative terms does not exist for very low perturbative orders. But when the perturbative order exceeds five, the number of degenerate terms predominates heavily over that of nondegenerate terms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.