Abstract

Cryptosporidium spp. are protozoan parasites that mainly inhabit intestinal epithelial cells, causing diarrheal diseases in humans and a great number of animals. Cryptosporidium parvum is the most common zoonotic species, responsible for nearly 45% of human cryptosporidiosis worldwide. Understanding the interaction mechanisms between C. parvum and host gastrointestinal epithelial cells has significant implications to control cryptosporidiosis. One up-regulated circRNA ciRS-7 was found previously by our group to promote in vitro propagation of C. parvum in HCT-8 cells. In the present study, miR-135a-5p, was found to be a miRNA target of ciRS-7. Cryptosporidium parvum infection induced significantly down-regulation of miR-135a-5p and dramatic up-regulation of its potential target stat1 gene at mRNA and protein levels. Dual luciferase reporter assays validated the physical interactions between miR-135a-5p and stat1, and between ciRS-7 and miR-135a-5p. Further study revealed that ciRS-7 could sponge miR-135a-5p to positively regulate the protein levels of STAT1 and phosphorylated STAT1 (p-STAT1) and thus promote C. parvum propagation in HCT-8 cells. Our findings further reveal the mystery of regulatory roles of host circRNAs during Cryptosporidium infection, and provide a novel insight to develop strategies to control cryptosporidiosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call