Abstract

Circular RNAs (circRNAs) exert crucial regulatory effects in the pathogenesis of multiple tumors. This work aimed to probe into the role of circ_0000094 in T cell acute lymphoblastic leukemia (T-ALL). In this work, quantitative real-time polymerase chain reaction (qRT-PCR) was applied to quantify circ_0000094, miR-223-3p, and F-box and WD repeat domain containing 7 (FBW7) mRNA expressions in lymph node samples from T-ALL patients; Western blot was adopted to examine FBW7 protein expression in T-ALL cells; cell proliferation was detected by cell counting kit-8 (CCK-8) experiment; apoptosis was examined by flow cytometry; Transwell experiments were applied to assess T-ALL cell migration and invasion; the interactions among circ_0000094 and miR-223-3p, and miR-223-3p and FBW7 were validated by bioinformatics prediction, dual-luciferase reporter gene assay, and RNA immunoprecipitation experiment. We reported that, circ_0000094 expression was markedly reduced in T-ALL and circ_0000094 was predominantly located in the cytoplasm; gain-of-function and loss-of-function assays verified that circ_0000094 overexpression remarkably suppressed T-ALL cell proliferation, migration, and invasion, and enhanced apoptosis while knocking down circ_0000094 enhanced the malignant phenotypes of T-ALL cells; "rescue experiments" implied that miR-223-3p mimics partly reversed the inhibitory effects on the malignant phenotype of T-ALL cells due to the circ_0000094 up-regulation; circ_0000094 was proved to be a molecular sponge for miR-223-3p, and it could up-regulate the expression of FBW7 via repressing miR-223-3p expression. Taken together, it was concluded that circ_0000094 impedes T-ALL progression by modulating the miR-223-3p/FBW7 axis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.