Abstract

Circular RNAs (circRNAs) are a class of non-coding RNAs with a unique covalently closed loop structure. Recent studies indicate that dysregulation of circRNAs acts a role in cancer progression and chemotherapy resistance via interacting with RNA-binding proteins (RBPs). Herein, we identified circPBX3 to be involved in cisplatin resistance of ovarian cancer. In our study, two cisplatin-resistant ovarian cancer cell lines were established, and transcriptome RNA-sequencing was performed and circPBX3 was identified as significantly upregulated circRNA in these cells. The characteristics of circPBX3 and potential function of circPBX3 were evaluated. We found that circPBX3 was upregulated in ovarian tumor tissues and cisplatin-resistant ovarian cancer cells. CircPBX3 overexpression increased the half maximal inhibitory rate (IC50) of cisplatin, promoted colony formation and tumor xenografts growth, and reduced cell apoptosis of ovarian cancer cells under cisplatin treatment, while silencing circPBX3 showed opposite effects. Furthermore, circPBX3 could interact with the RNA-binding protein IGF2BP2, thus increased the stability of ATP7A mRNA and elevated ATP7A protein level. In addition, silencing ATP7A in ovarian cancer cells abrogated the effect of circPBX3 overexpression on cisplatin tolerance. Our findings provided a novel role of circPBX3 in cisplatin resistance of ovarian cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.