Abstract

Dysfunction of vascular smooth muscle cells (VSMCs) plays a critical role in the pathogenesis of intracranial aneurysm (IA). Circular RNAs (circRNAs) have been implicated in the pathogenesis of IA by reducing microRNA (miRNA) activity. In this paper, we investigated the precise roles of circRNA ADP ribosylation factor interacting protein 2 (circ-ARFIP2, circ_0021001) in VSMC dysfunction. The levels of circ-ARFIP2, miR-338-3p and kinase insert domain receptor (KDR) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Ribonuclease (RNase) R and subcellular fractionation assays were used to assess the stability and localization of circ-ARFIP2, respectively. Cell viability was detected by Cell Counting Kit-8 (CCK-8) assay, and cell invasion was measured by transwell assay. Cell proliferation was gauged by 5-Ethynyl-2'-Deoxyuridine (EdU) assay. Cell migration was evaluated by transwell and wound-healing assays. Targeted correlations among circ-ARFIP2, miR-338-3p and KDR were validated by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Circ-ARFIP2 and KDR were underexpressed and miR-338-3p was overexpressed in the arterial wall tissues of IA patients. Overexpression of circ-ARFIP2 in human umbilical artery smooth muscle cells (HUASMCs) showed a significant promotion in cell proliferation, migration and invasion. Mechanistically, circ-ARFIP2 targeted miR-338-3p, and circ-ARFIP2 regulated cell behaviors by miR-338-3p. KDR was a direct and functional target of miR-338-3p. Moreover, KDR was a downstream effector of circ-ARFIP2 function. Circ-ARFIP2 regulated KDR expression by targeting miR-338-3p. Our present findings demonstrated that the increased level of circ-ARFIP2 enhanced HUASMC proliferation, migration and invasion at least in part by the miR-338-3p/KDR axis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.