Abstract

Fine particulate matter (PM2.5) has been shown to induce DNA damage. Circular RNAs (circRNAs) have been implicated in various disease processes related to environmental chemical exposure. However, the role of circRNAs in the regulation of DNA damage response (DDR) after PM2.5 exposure remains unclear. In this study, male ICR mice were exposed to PM2.5 at a daily mean concentration of 382.18μg/m3 for 3months in an enriched-ambient PM2.5 exposure system in Shijiazhuang, China, and PM2.5 collected form Shijiazhuang was applied to RAW264.7 cells at 100µg/mL for 48h. The results indicated that exposure to PM2.5 induced histopathological changes and DNA damage in the lung, kidney and spleen of male ICR mice, and led to decreased cell viability, increased LDH activity and DNA damage in RAW264.7 cells. Furthermore, circ_Cabin1 expression was significantly upregulated in multiple mouse organs as well as in RAW264.7 cells upon exposure to PM2.5. PM2.5 exposure also resulted in impairment of non-homologous end joining (NHEJ) repair via the downregulation of Lig4 or Dclre1c expression in vivo and in vitro. Importantly, circ_Cabin1 promoted PM2.5-induced DNA damage via inhibiting of NHEJ repair. Moreover, the expression of circ_Cabin1 and Lig4 or Dclre1c was strongly correlated in multiple mouse organs, as well as in the blood. In summary, our study provides a new perspective on circRNAs in the regulation of DDR after environmental chemical exposure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.