Abstract

Dysregulated circular RNAs (circRNAs) are significantly related with tumor initiation and progression. However, biological activity and potential molecular mechanism of circRNAs in gastric cancer (GC) deserve further exploration. We carried out total RNA sequencing and acquired the expression profiles of circRNAs. Quantitative real-time PCR as well as RNA in situ hybridization helped to validate circ_0000119 dysregulation. Various in vitro experiments were utilized to investigate the biological activities of circ_0000119 in GC, and the clinical relation of circ_0000119 in vivo was identified through nude mouse xenograft models. Finally, the molecular mechanism of circ_0000119 was clarified via luciferase assays, western blot, and rescue experiments. Compared with adjacent normal tissues, the study found an increase in the expression of circ_0000119 as well as its host linear gene MAN1A2 in GC tissues. Circ_0000119 overexpression promoted proliferation and migration of GC cells in vitro and in vivo, whereas circ_0000119 suppression had the opposite effect. Mechanistically, circ_0000119 sponged miR-502-5p which played an inhibitory role in tumors. Furthermore, we found that miR-502-5p alleviated GC progression through targeting MTBP and downregulating its expression at mRNA and protein levels. In conclusion, our findings reveal a new regulatory mechanism for circ_0000119, which sponges the miR-502-5p, suppresses MTBP expression, and finally promotes GC progression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call