Abstract

We present the first circular polarization measurements of circumstellar H2O masers. Previously the magnetic field in circumstellar envelopes has been estimated using polarization observations of SiO and OH masers. SiO masers are probes of the high temperature and density regime close to the central star. OH masers are found at much lower densities and temperatures, generally much further out in the circumstellar envelope. The detection of the circular polarization of the (6_16 - 5_23) rotational transition of the H2O maser could be attributed to Zeeman splitting due to the magnetic field in the intermediate temperature and density regime. The fields inferred here agree well with predicted values for a combination of the r^{-2} dependence of a solar-type magnetic field, and the coupling of the field to the high density masing regions. We also discuss the unexpected narrowing of the circular polarization spectrum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call