Abstract

A relative broadband circular polarization analyzer based on a single-turn Archimedean nano-pinholes array has been proposed and investigated systematically from visible spectrum to near infrared region. The spiral arrangement of circular nano-pinholes can implement spatially separated fields according to the relationship between the spiral direction of Archimedean structure and chirality of circularly polarized light (CPL). The enhanced-characteristics mechanisms of the single-turn spirally arranged Archimedean pinholes array have been deduced and investigated by the theoretical analysis and numerical simulation in detail. Different from the single operating wavelength of the spiral slit structure, this novel design also shows a relative wide range of the operating wavelengths in the focusing and defocusing effects. The new proposed circular polarization analyzer could find more extensive applications, such as analyzing the physiological properties of chiral molecules based on circular polarizations, full Stokes-parameter polarimetric imaging applications and so on.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call