Abstract

Single-molecule fluorescence polarization technique has been utilized to detect structural changes in biomolecules and intermolecular interactions. Here we developed a single-molecule fluorescence polarization measurement system, named circular orientation fluorescence emitter imaging (COFEI), in which a ring pattern of an acquired fluorescent image (COFEI image) represents an orientation of a polarization and a polarization factor. Rotation and pattern change of the COFEI image allow us to find changes in the polarization by eye and further values of the parameters of a polarization are determined by simple image analysis with high accuracy. We validated its potential applications of COFEI by three assays: 1) Detection of stepwise rotation of F1-ATPase via single quantum nanorod attached to the rotary shaft γ; 2) Visualization of binding of fluorescent ATP analog to the catalytic subunit in F1-ATPase; and 3) Association and dissociation of one head of dimeric kinesin-1 on the microtubule during its processive movement through single bifunctional fluorescent probes attached to the head. These results indicate that the COFEI provides us the advantages of the user-friendly measurement system and persuasive data presentations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.