Abstract
Circular intensity differential scattering (CIDS) has been proven a powerful method in determining the higher-order structure of large biopolymers, such as chromatin. Theoretical predictions of the expected differential light scattering of circularly polarized light have previously been made for chromatin, either within the Born approximation, treating nucleosomes as noninteracting, oblate ellipsoids, or within a multiple dipole approximation, treating nucleosomes as interacting spheres. In order to conduct a meaningful interpretation of the CIDS signal in terms of given geometric parameters of the chiral structure, we have in this paper combined the two approaches considering the mutual interactions of ellipsoidal nucleosomes. In the process we have also found a confirmation for the validity of the Born approximation itself.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.