Abstract

Construction is a resource-intensive industry where a circular economy (CE) is essential to minimize global impacts and conserve natural resources. A CE achieves long-term sustainability by enabling materials to circulate along the critical supply chains. Accordingly, recent research has proposed a paradigm shift towards CE-based sustainability. However, uncertainties caused by fluctuating raw material prices, scarce materials, increasing demand, consumers’ expectations, lack of proper waste infrastructure, and the use of wrong recycling technologies all lead to complexities in the construction industry (CI). This research paper aims to determine the enablers of a CE for sustainable development in the CI. The system dynamics (SD) approach is utilized for modeling and simulation purposes to address the associated process complexity. First, using content analysis of pertinent literature, ten enablers of a CE for sustainable development in CI were identified. Then, causality among these enablers was identified via interviews and questionnaire surveys, leading to the development of the causal loop diagram (CLD) using systems thinking. The CLD for the 10 shortlisted enablers shows five reinforcing loops and one balancing loop. Furthermore, the CLD was used to develop an SD model with two stocks: “Organizational Incentive Schemes” and “Policy Support.” An additional stock (“Sustainable Development”) was created to determine the combined effect of all stocks. The model was simulated for five years. The findings show that policy support and organizational incentive schemes, among other enablers, are critical in implementing a CE for sustainable development in CI. The outcomes of this study can help CI practitioners to implement a CE in a way that drives innovation, boosts economic growth, and improves competitiveness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call