Abstract

According to the Circular Economy Package promoted by the European directive, plastic bags companies must use in their formulations a percentage of polyethylene waste (industrial and/or domestic) greater than 70%. Following that regulation requires an understanding of its consequences in the final product from an industrial point of view. This manuscript analyzes the thermal and morphological changes related to the tear resistance of linear-low density polyethylene (LLDPE) samples from industrial waste generated by the company Sphere Spain subjected to the degradation produced by the recycling cycles. The process is analogue to the industrial, starts from samples in pellets then a film by blow extrusion is obtained (odd steps) and posteriorly this film is recycled to pellets again (even steps). The results obtained show that the LLDPE samples develop two crystalline structures (CS1 and CS2) which evolve differently through the recycling cycles with a tendency to decrease in crystallinity due to degradation that is not the same for the process of obtaining film or recycling to pellet. The molecules with a more linear structure and a longer chain break and branch. The more branched structure increases and tends to crosslinking. This leads to a decrease in tear strength in the longitudinal direction, which is not so evident in the transversal direction. The samples could admit four recycling cycles with and acceptable tear resistance. The longitudinal tear strength value decreases by 40% for each film and 20% in the case of tearing in the transverse direction. The results obtained in this research work show that the regulations included in the cited circular economy package can be applied in the manufacture of consumer bags, helping also to reduce the dependence of manufacturers on fluctuations in delivery by collapses in shipping.

Highlights

  • The evolution to a system based on a circular economy with minimum waste, has arisen the interest of the chemical industry

  • According to the Circular Economy Package promoted by the European directive, plastic bags companies must use in their formulations a percentage of polyethylene waste greater than 70%

  • Following that regulation requires an understanding of its consequences in the final product from an industrial point of view. This manuscript analyzes the thermal and morphological changes related to the tear resistance of linear-low density polyethylene (LLDPE) samples from industrial waste generated by the company Sphere Spain subjected to the degradation produced by the recycling cycles

Read more

Summary

Introduction

The evolution to a system based on a circular economy with minimum waste, has arisen the interest of the chemical industry. The recycling and disposal of plastics, due to their massive production, is one of the main concerns in the path towards a cleaner system of production. According to circular economy principles, a system should tend to restoration or regeneration. In the case of plastics materials this is interpreted as the possibility of recycling plastic materials and the recovery of energy. In order to improve their circularity, plastics have a big potential. Nowadays, their recycling percentage is still low, even though in recent years there has been an important increase [1]

Objectives
Methods
Results

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.