Abstract

Circular dichroism spectroscopy is essential for structural characterization of proteins and chiral nanomaterials. Chiral structures from plasmonic materials have extraordinary strong circular dichroism effects compared to their molecular counterparts. While being extensively investigated, the comprehensive account of circular dichroism effects consistent with other plasmonic phenomena is still missing. Here we investigated the circular differential scattering of a simple chiral plasmonic system, a twisted side-by-side Au nanorod dimer, using single-particle circular dichroism spectroscopy complimented with electromagnetic simulations. This approach enabled us to quantify the effects of structural symmetry breaking, namely, size-mismatch between the constituent Au nanorods and large twist angles on the resulting circular differential scattering spectrum. Our results demonstrate that, if only scattering is considered as measured by dark-field spectroscopy, a homodimer of Au nanorods with similar sizes prod...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call