Abstract
AbstractNative, NaCl‐treated, trypsin‐treated, and polylysine‐bound nucleohistones were studied in 2.5 × 10−4 M EDTA, pH 8.0, using circular dichroism (CD) and thermal denaturation. Removal of histone I by 0.6 M NaCl has a much smaller effect on both Δε220 and Δε278 than the removal of other histones. This indicates that histone I has less helical content and less conformational effect on the DNA in nucleohistone. By extrapolating to 100% binding by histones other than I, the positive CD band near 275 nm is close to zero. Comparison is also made between the effects of binding by the more basic and the less basic halves of histones by trypsin‐digestion and polylysine‐binding experiments. Trypsin digestion of nucleohistone reduces melting band IV at 82°C much more than melting band III at 72°C. However, the CD changes of Δε278 and Δε220 induced by trypsin digestion are small, unless melting band III is also reduced by the use of a higher trypsin level. This implies that the less basic halves of histones, which stabilize DNA to 72°C (melting band III), have more helical structure and are more responsible for conformational change in DNA than are the more basic halves, which stabilize DNA to 82°C (melting band IV). Polylysine binding to nucleohistone diminishes melting band III but has no effect on melting band IV. This binding affects only slightly the Δε220 of nucleohistone, indicating that polylysine interferes very little with the structure of the less basic halves of bound histones. The implications of these studies with respect to chromatin structure are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.