Abstract

The effect of divalent cations on the near ultraviolet circular dichroism (CD) spectrum of yeast enolase showed that calcium, magnesium, and nickel ions produced identical changes. This was interpreted as indicating that the cations bound to the same sites on the enzyme and produced identical changes in tertiary structure. There was no effect of magnesium ion on the far ultraviolet spectrum. Evidently magnesium ion has no effect on the secondary structure. Substrate bound to the enzyme when the above cations were present although calcium permits no enzymatic activity. The CD spectral difference produced by the substrate was nearly the reverse of that produced by the metal ions. Glycolic acid phosphate, a competitive inhibitor lacking carbon-3, produced no effect, indicating carbon-3 was necessary for the CD spectral changes. The CD and visible absorption spectra of nickel and cobalt bound to various sites on the enzyme showed that the binding sites were octahedral or distorted octahedral in coordination and that the ligands appeared to be oxyligands: water molecules, hydroxyl or carboxyl groups. Examination of the effects of substrate and two compounds thought to be “transition state analogues” showed that these perturbed the “conformational” sites of the enzyme. The “catalytic” and “inhibitory” sites did not appear to be very CD active.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.