Abstract

Allophycocyanin, the terminal pigment in the phycobiliprotein transfer sequence, isolated from dissociated phycobilisomes of Nostoc sp., was fractionated on calcium phosphate columns into four spectral forms: APC I, II, III, and B. These forms had distinctive isoelectric points of 5.15, 4.68, 4.82, and 4.98, respectively. The APC forms differed in their secondary structure as suggested by the varying percentages of their ..cap alpha.. helix and ..beta..-pleated sheets. APC II and III are short-emitting forms with a fluorescence maximum at 660 nm, while APC I and B are long-emitting forms with a maximum at 681 nm. The maximum of APC I and B at -196/sup 0/C in 0.1 M phosphate and 20% glycerol shifted to 688 nm. Fluorescence polarization spectra suggest that there are at least two groups of chromophores responsible for the absorption of APC I and similarly of APC B. In APC II and III, the fluorescence was mostly depolarized. Circular dichroism revealed extensive positive and negative ellipticity band multiplicities in the chromophore absorption region of APC I and B, but not in APC II and III. Two main CD extrema in APC B, a negative band and a positive band, are probably the result of exciton coupling ofmore » phycocyanobilin chromophores absorbing at longer wavelength. In APC I three different peaks are revealed in the absorption spectrum and four ellipticity bands in the CD spectrum at -196/sup 0/C. These can best be explained as being due to the combined interactions of the chromophore with the protein and exciton coupling between chromophores.« less

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call