Abstract

Stearoyl-acyl carrier protein (stearoyl-ACP) Δ9-desaturase (Δ9D) catalyzes the insertion of a cis double bond between the 9 and 10 positions of the stearoyl-ACP to convert it to oleoyl-ACP. The binuclear non-heme iron active site of the fully reduced enzyme (reduced Δ9D) and its substrate-bound form (stearoyl-ACP Δ9D) have been studied using a combination of circular dichroism (CD) and magnetic circular dichroism (MCD) to probe their geometric and electronic structures. CD and MCD in the near-IR region probe the ligand-field d−d transitions of the ferrous sites. Variable-temperature variable-field (VTVH) MCD combined with a spin-Hamiltonian analysis including the zero-field splitting (ZFS) of both irons and the exchange coupling (J) between the irons due to bridging ligation is used to probe their ground-state properties. These ground- and excited-state results indicate that the active site of reduced Δ9D has two equivalent 5-coordinate irons in a distorted square pyramidal geometry. They are weakly antiferromagnetically coupled with large negative and equivalent ZFSs (D1 = D2 < 0), which gives a diamagnetic ground state interacting with low-lying paramagnetic excited states. Addition of substrate causes a significant change in both the excited states and the nature of the ground state. These spectral changes indicate that one of the irons becomes 4-coordinate, while the other distorts toward a trigonal bipyramidal geometry. The two irons remain weakly antiferromagnetically coupled. However, this geometry change modifies their ZFSs (D1 < 0 and D2 > 0), which results in a new ground state, Ms = ±1, with a low-lying Ms = ±2 first excited state. These results are the first direct evidence that the stearoyl-ACP binding strongly perturbs the active site, creating an additional open coordination position that correlates with enhanced dioxygen reactivity. These results are correlated with the X-ray crystal structure and compared to the related enzyme, ribonucleotide reductase, to gain insight into geometric and electronic structure contributions to dioxygen reactivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call