Abstract

The flow over a circular cylinder controlled by a two-dimensional synthetic jet positioned at the mean rear stagnation point has been experimentally investigated in a water channel at the cylinder Reynolds numberRe= 950. This is an innovative arrangement and the particle-image-velocimetry measurement indicates that it can lead to a novel and interesting phenomenon. The synthetic-jet vortex pairs induced near the exit convect downstream and interact with the vorticity shear layers behind both sides of the cylinder, resulting in the formation of new induced wake vortices. The present vortex synchronization occurs when the excitation frequency of the synthetic jet is between 1.67 and 5.00 times the natural shedding frequency at the dimensionless stroke length 99.5. However, it is suggested that the strength of the synthetic-jet vortex pair plays a more essential role in the occurrence of vortex synchronization than the excitation frequency. In addition, the wake-vortex shedding is converted into a symmetric mode from its original antisymmetric mode. The symmetric shedding mode weakens the interaction between the upper and lower wake vortices, resulting in a decrease in the turbulent kinetic energy produced by them. It also has a significant influence on the global flow field, including the velocity fluctuations, Reynolds stresses and flow topology. However, their distributions are still dominated by the large-scale coherent structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.