Abstract

We employ the circular cumulant approach to construct a low dimensional description of the macroscopic dynamics of populations of phase oscillators (elements) subject to non-Gaussian white noise. Two-cumulant reduction equations for α-stable noises are derived. The implementation of the approach is demonstrated for the case of the Kuramoto ensemble with non-Gaussian noise. The results of direct numerical simulation of the ensemble of N=1500 oscillators and the "exact" numerical solution for the fractional Fokker-Planck equation in the Fourier space are found to be in good agreement with the analytical solutions for two feasible circular cumulant model reductions. We also illustrate that the two-cumulant model reduction is useful for studying the bifurcations of chimera states in hierarchical populations of coupled noisy phase oscillators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call