Abstract

Circular economy and aqueous synthesis are attractive concepts for sustainable chemistry. Here it is reported that the two can be combined in the universal method for peptide chemistry, fluorenylmethoxycarbonyl(Fmoc)/t-Bu solid-phase peptide synthesis (SPPS). It was demonstrated that Fmoc/t-Bu SPPS could be performed under aqueous conditions using standard Fmoc amino acids (AAs) employing TentaGel S as resin and 4 : 1 mixture of water with inexpensive green solvent PolarClean. This resin/solvent combination played a crucial dual role by virtue of improving resin swelling and solubility of starting materials. In a model coupling, TCFH and 2,4,6-collidine afforded a full conversion at only 1.3 equiv. AA, and these conditions were used in SPPS of Leu enkephaline amide affording the model peptide in 85 % yield and 86 % purity. A method to recycle the waste by filtration through a mixed ion exchange resin was developed, allowing reusing the waste without affecting quality of the peptide. The method herein obviates the use of unconventional or processed AAs in aqueous SPPS while using lower amounts of starting materials. By recycling/reusing SPPS waste the hazardous dipolar aprotic solvents used in SPPS were not only replaced with an aqueous medium, solvent use was also significantly reduced. This opens up a new direction in aqueous peptide chemistry in which efficient use of inexpensive starting materials and waste minimization is coupled with the universal Fmoc/t-Bu SPPS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.