Abstract
Conditions for the production of near-circular polarization states of the evanescent field present in the rarer medium in total internal reflection of incident monochromatic p-polarized light at a dielectric-dielectric planar interface are determined. Such conditions are satisfied if high-index (>3.2) transparent prism materials (e.g., GaP and Ge) are used at angles of incidence well above the critical angle but sufficiently below grazing incidence. Furthermore, elliptical polarization of incident light with nonzero p and s components can be tailored to cause circular polarization of the resultant tangential electric field in the plane of the interface or circular polarization of the transverse electric field in a plane normal to the direction of propagation of the evanescent wave. Such polarization control of the evanescent field is significant, e.g., in the fluorescent excitation of molecules adsorbed at solid-liquid and solid-gas interfaces by total internal reflection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.