Abstract

Simple SummaryExpression of circular RNAs is known to be deregulated in cancer. Here the most comprehensive set of differentially expressed RNA circles in medulloblastoma compared to cerebellum is provided. Additionally, fusion RNAs are also identified in both cancerous and normal cerebellar tissue. Some of the fusions detected in medulloblastoma are generated by genomic rearrangements that link different genes. However, fusion RNAs are also detected in normal cerebellum. In fact, there are cases where the same fusion RNA is also found in medulloblastoma. This observation underscores that the formation of fusion transcripts may not be limited to chromosomal events but could also result from mechanisms that act at the RNA level. These include read-through transcription of neighboring genes and intermolecular splicing of pre-mRNAs from different genes Importantly, these RNA “recombination” events occur not only in normal but also in cancerous tissue.Background. The cerebellar cancer medulloblastoma is the most common childhood cancer in the brain. Methods. RNA sequencing of 81 human biospecimens of medulloblastoma using pipelines to detect circular and fusion RNAs. Validation via PCR and Sanger sequencing. Results. 27, 56, 28 and 11 RNA circles were found to be uniquely up-regulated, while 149, 7, 20 and 15 uniquely down-regulated in the SHH, WNT, Group 3, and Group 4 medulloblastoma subtypes, respectively. Moreover, linear and circular fusion RNAs containing exons from distinct genes joined at canonical splice sites were also identified. These were generally expressed less than the circular RNAs, however the expression of both the linear and the circular fusions was comparable. Importantly, the expression of the fusions in medulloblastoma was also comparable to that of cerebellum. Conclusions. A significant number of fusions in tumor may be generated by mechanisms similar to the ones generating fusions in normal tissue. Some fusions could be rationalized by read-through transcription of two neighboring genes. However, for other fusions, e.g., a linear fusion with an exon from a downstream gene joined 5′ to 3′ with an exon from an upstream gene, more complicated splicing mechanisms, e.g., trans-splicing, have to be postulated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call