Abstract

AbstractWorldwide adoption of fourth-generation wireless (4G) long-term evolution (LTE) smartphones and the actual transition to fifth-generation wireless(5G) is the main driving engine for semiconductor industry. 5G is expected to reach high data rate speeds (1 Gbps) and low latency (<1 ms). 5G requires more RF bandwidth and therefore an increase in the number of components such as RF switches, acoustic filters, and power amplifiers integrated in few RF front-end modules. Also, there is an increase in the number of RF radio transmitters and receivers operating at the same time. This paper presents new architecture elements for 5G RF front-end modules. Circuit details and measurements are presented to reduce the RF noise, improve the efficiency, and help the coexistence of multiple radio transmitters. These circuits will help extend the 5G applications with radar-like sensing applications, remote medicine, and autonomous driving.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.