Abstract

The memristor, which is the fourth passive element that is lacking, is a nonvolatile device with two terminals. It promises advancement in future technology, which will aid in the reduction of power consumption, the reduction of cost, and the increase of performance of integrated circuits. This work presents a thorough investigation of memristor modeling through the use of Mat lab simulations. For the purpose of anticipating the behavior of the memristor device, we consider three different modeling strategies. In addition to the solid-state thin film memristor device, a spintronic memristor device based on magnetic technology was also simulated in this study. The fact that it has nanoscale geometry means that it is susceptible to process fluctuations during the fabrication process. The electrical behavior of the memristor deviates from the desired values as a result of process changes. As a result, the yield of a memristor-based memory design is lowered as a result. Also discussed in this study is a concrete model of a spintronic device that is based on the mechanism of magnetic-domain-wall motion and is described in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call