Abstract

It was originally stated that convolution operations were required to implement adjoint sensitivity in the time domain. In this paper, we revisit time-domain adjoint sensitivity with a circuit theoretic approach and an efficient solution is clearly stated in terms of device level. Key is the linearization of the energy storage elements (e.g., capacitance and inductance) and nonlinear memoryless elements (e.g., MOS, BJT DC characteristics) at each time step. Due to the finite precision of computation, numerical errors that accumulate across timesteps can arise in nonlinear elements. A methodology to suppress that error is introduced. Numerical results demonstrate that the proposed method achieves accuracy while significantly reducing computational run time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.