Abstract

An original mechanism is here proposed to achieve polarization conversion from linear to circular with the use of full-metal polarizing screens. Such screens are self-supported and conceived from the periodic arrangement of 3-D unit cells. They are built from sections of rectangular waveguides operating below the cutoff frequency and loaded with slotted discontinuities. The polarizer operates in transmission mode; the discontinuities are responsible for both its high return losses and the conversion of the impinging linear polarization to circular. Two types of 3-D cells are presented, and both of them are analyzed and designed through equivalent circuit models (CMs). These models have been thoroughly built in order to capture all the phenomena underlying the discontinuities’ behavior. The characterization of the first cell is fully done analytically, whereas the second cell needs reduced help from a full-wave solver. Furthermore, the CMs allow simple design guidelines to be identified for this type of polarizer. Two designs are performed operating in Ka-band, proving that an extension of the operation bandwidth (axial ratio and $S_{11}$ ) to 11% is possible by employing the second cell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.