Abstract

IntroductionOne of the greatest problems with continuous renal replacement therapy (CRRT) is early coagulation of the filters. Few studies have monitored circuit function prospectively. The purpose of this study was to determine the variables associated with circuit life in critically ill children with CRRT.MethodsA prospective observational study was performed in 122 children treated with CRRT in a pediatric intensive care unit from 1996 to 2006. Patient and filter characteristics were analyzed to determine their influence on circuit life. Data were collected on 540 filters in 122 patients and an analysis was performed of the 365 filters (67.6%) that were changed due to circuit coagulation.ResultsThe median circuit life was 31 hours (range 1 to 293 hours). A univariate and multivariate logistic regression study was performed to assess the influence of each one of the factors on circuit life span. No significant differences in filter life were found according to age, weight, diagnoses, pump, site of venous access, blood flow rate, ultrafiltration rate, inotropic drug support, or patient outcome. The mean circuit life span was longer when the heparin dose was greater than 20 U/kg per hour (39 versus 29.1 hours; P = 0.008), with hemodiafiltration compared with hemofiltration (34 versus 22.7 hours; P = 0.001), with filters with surface areas of 0.4 to 0.9 m2 (38.2 versus 26.1 hours; P = 0.01), and with a catheter size of 6.5 French or greater (33.0 versus 25.0 hours; P = 0.04). In the multivariate analysis, hemodiafiltration, heparin dose of greater than 20 U/kg per hour, filter surface area of 0.4 m2 or greater, and initial creatinine of less than 2 mg/dL were associated with a filter life of more than 24 and 48 hours. Total effluent rate of greater than 35 mL/kg per hour was associated only with a filter life of more than 24 hours.ConclusionCircuit life span in CRRT in children is short but may be increased by the use of hemodiafiltration, higher heparin doses, and filters with a high surface area.

Highlights

  • One of the greatest problems with continuous renal replacement therapy (CRRT) is early coagulation of the filters

  • The mean circuit life span was longer when the heparin dose was greater than 20 U/kg per hour (39 versus 29.1 hours; P = 0.008), with hemodiafiltration compared with hemofiltration (34 versus 22.7 hours; P = 0.001), with filters with surface areas of 0.4 to 0.9 m2 (38.2 versus 26.1 hours; P = 0.01), and with a catheter size of 6.5 French or greater (33.0 versus 25.0 hours; P = 0.04)

  • Gender, weight, and diagnoses were recorded on admission to the pediatric intensive care unit and pediatric risk of mortality (PRISM), pediatric index of mortality (PIM), and pediatric logistic organ dysfunction (PELOD) scores, lactic acid, and need for inotropic drug support were recorded at the beginning of the CRRT

Read more

Summary

Introduction

One of the greatest problems with continuous renal replacement therapy (CRRT) is early coagulation of the filters. The purpose of this study was to determine the variables associated with circuit life in critically ill children with CRRT. Continuous renal replacement therapy (CRRT) is currently the treatment of choice in critically ill adults and children with acute renal failure, fluid overload, or multiorgan dysfunction as it allows a steady removal of fluid, creatinine, urea, and other substances and produces with less hemodynamic instability than occurs with hemodialysis [1,2,3,4,5]. One of the greatest problems with CRRT is early coagulation of the filters, leading to blood loss, decreased efficacy of the technique, increased costs, and a greater risk of hemodynamic instability in the connection [6,7]. We conducted a prospective observational study to determine those variables associated with circuit life in critically ill children treated by CRRT.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.