Abstract

Schottky tunneling source FET (STSFET) is a promising device alternative for future nanometer-scale technology. This paper presents a circuit-level performance evaluation of using STSFET for mixed-signal circuit applications, as well as a design approach that can guide circuit designers to use STSFET optimally. A switched-capacitor track-and-hold amplifier is chosen as a test vehicle, and circuit-level power-performance tradeoff is examined when STSFET is incorporated into the existing array of device types in 90-nm CMOS process. To quantitatively explore the design tradeoff, this paper employs an automated circuit optimization framework using geometric programming, a special type of convex optimization problem. Numerical analysis shows that for our test bench circuit, introducing STSFET, when compared to using devices in 90-nm CMOS process, leads to 30%-50% power reduction, depending on the performance specifications. The analysis also reveals that the full benefit of using STSFET can only be achieved by judiciously choosing device types in a given circuit structure, and the optimal device type selection for a mixed-signal circuit can often be blended using both conventional devices and application-specific devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.