Abstract

Linear transfer function approximations of the fractional integrators 1/sm with m = 0.80–0.99 with steps of 0.01 are calculated systemically from the fractional order calculus and frequency-domain approximation method. To illustrate the effectiveness for fractional functions, the magnitude Bode diagrams of the actual and approximate transfer functions 1/sm with a slope of —20m dB/decade are depicted. By using the transfer function approximations of the fractional integrators, a new fractional-order nonlinear system is investigated through the bifurcation diagram and Lyapunov exponent. The corresponding circuit of the fractional-order system is designed and the experimental results match perfectly with the numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.