Abstract

Daily rhythms are generated by the circadian timekeeping system, which is orchestrated by the master circadian clock in the suprachiasmatic nucleus (SCN) of mammals. Circadian timekeeping is endogenous and does not require exposure to external cues during development. Nevertheless, the circadian system is not fully formed at birth in many mammalian species and it is important to understand how SCN development can affect the function of the circadian system in adulthood. The purpose of the current review is to discuss the ontogeny of cellular and circuit function in the SCN, with a focus on work performed in model rodent species (i.e., mouse, rat, and hamster). Particular emphasis is placed on the spatial and temporal patterns of SCN development that may contribute to the function of the master clock during adulthood. Additional work aimed at decoding the mechanisms that guide circadian development is expected to provide a solid foundation upon which to better understand the sources and factors contributing to aberrant maturation of clock function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.