Abstract

We investigate the realization complexity of k -valued logic functions k 2 by combinational circuits in an infinite basis that includes the negation of the Lukasiewicz function, i.e., the function k−1−x, and all monotone functions. Complexity is understood as the total number of circuit elements. For an arbitrary function f, we establish lower and upper complexity bounds that differ by at most by 2 and have the form 2 log (d(f) + 1) + o(1), where d(f) is the maximum number of times the function f switches from larger to smaller value (the maximum is taken over all increasing chains of variable tuples). For all sufficiently large n, we find the exact value of the Shannon function for the realization complexity of the most complex function of n variables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.