Abstract
AbstractQuantum circuit complexity has played a central role in recent advances in holography and many‐body physics. Within quantum field theory, it has typically been studied in a Lorentzian (real‐time) framework. In a departure from standard treatments, we aim to quantify the complexity of the Euclidean path integral. In this setting, there is no clear separation between space and time, and the notion of unitary evolution on a fixed Hilbert space no longer applies. As a proof of concept, we argue that the pants decomposition provides a natural notion of circuit complexity within the category of 2‐dimensional bordisms and use it to formulate the circuit complexity of states and operators in 2‐dimensional topological quantum field theory. We comment on analogies between our formalism and others in quantum mechanics, such as tensor networks and second quantization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.