Abstract

AbstractQuantum circuit complexity has played a central role in recent advances in holography and many‐body physics. Within quantum field theory, it has typically been studied in a Lorentzian (real‐time) framework. In a departure from standard treatments, we aim to quantify the complexity of the Euclidean path integral. In this setting, there is no clear separation between space and time, and the notion of unitary evolution on a fixed Hilbert space no longer applies. As a proof of concept, we argue that the pants decomposition provides a natural notion of circuit complexity within the category of 2‐dimensional bordisms and use it to formulate the circuit complexity of states and operators in 2‐dimensional topological quantum field theory. We comment on analogies between our formalism and others in quantum mechanics, such as tensor networks and second quantization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call