Abstract
Circuit algebras, introduced by Bar-Natan and the first author, are a generalization of Jones's planar algebras, in which one drops the planarity condition on “connection diagrams”. They provide a useful language for the study of virtual and welded tangles in low-dimensional topology. In this note, we present the circuit algebra analogue of the well-known classification of planar algebras as pivotal categories with a self-dual generator. Our main theorem is that there is an equivalence of categories between circuit algebras and the category of linear wheeled props – a type of strict symmetric tensor category with duals that arises in homotopy theory, deformation theory and the Batalin-Vilkovisky quantization formalism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.