Abstract

Abnormalities in the function of fibroblast-like synoviocytes (FLSs) are crucial factors leading to joint damage of rheumatoid arthritis. In recent years, the role of circular RNA (circRNA) in RA has gradually been revealed. However, the functional regulation of FLSs mediated by circRNA and its potential mechanisms remain unclear. In this study, we elucidated the expression profile of circRNA in FLSs, as well as the role and molecular mechanisms of circTldc1. Through sequencing and validation experiments on primary FLSs derived from collagen-induced arthritis (CIA) rats, we found that circTldc1 can promote FLSs proliferation and exacerbate CIA-induced joint damage. The data revealed that circTldc1's parent gene, Tldc1, is homologous to human Tldc1, and circTldc1 is located in the cytoplasm of FLSs, belonging to the exonic circRNA category. The results from bioinformatics analysis, molecular experiments on FLSs (manipulating circTldc1 expression in vitro), and animal experiments (local regulation of circTldc1 expression in vivo) collectively confirmed that circTldc1 promotes Tldc1 expression by targeting miR-485–5p. High expression of Tldc1 further enhances FLSs proliferation and inflammatory responses, thereby worsening joint damage in CIA rats. High expression of circTldc1 and its parent gene Tldc1 may serve as biomarkers for RA. Local regulation of circTldc1 and Tldc1 gene levels in the joint cavity may represent a potential strategy to improve joint damage and inflammation in RA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call