Abstract

The role of circular RNA (circRNAs) in hepatocellular carcinoma (HCC) has been extensively studied. Previous research has highlighted the regulatory role of circSNX6 in HCC cells and tissues. However, the precise mechanism underlying HCC progression still requires comprehensive investigation. The study initially utilized quantitative reverse transcription-polymerase chain reaction (qRT-PCR) to assess circSNX6 expression levels in HCC cell lines and tissues. Subsequently, the stability of circRNA was evaluated through Ribonuclease R and actinomycin D treatment assays. The impact of circSNX6 knockdown on proliferation, migration, invasion, and angiogenesis abilities was determined using various assays including colony formation, Transwell culture system, tube formation assay, and cell counting kit (CCK)-8 assays. Additionally, RNA immunoprecipitation chip and dual-luciferase reporter assays were employed to investigate the interactions between circSNX6 and miR-383-5p. Finally, an HCC xenograft tumor model in mice was established to assess the in vivo expression of circSNX6 and its functional role in HCC. Our findings revealed an elevated circSNX6 expression in HCC tissues, which was correlated with poor patient prognosis. Knockdown of circSNX6 suppressed HCC cell growth, invasion, metastasis, and angiogenesis. The downregulation of miR-383-5p, a target of circSNX6, significantly attenuated the tumor-suppressive effects induced by circSNX6 knockdown. Moreover, circSNX6 was found to modulate VEGFA expression by targeting miR-383-5p. The inhibition of HCC cell proliferation by miR-383-5p could be partially reversed by overexpressing VEGFA. Silencing circSNX6 also suppressed tumor formation and the metastasis of HCC cells in a mouse model. In summary, our findings suggest that circSNX6 promotes cell proliferation, metastasis, and angiogenesis in HCC by regulating the miR-383-5p/VEGFA pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call