Abstract

Cementum is a part of the periodontium and anchors periodontal ligaments to the alveolar bone. Cementoblasts are responsible for the cementum formation via matrix deposition and subsequently mineralization. Thus, exploring novel mechanisms underlying the function of cementoblast contributes to the treatment of cementum damage. Recently, circRNA Lrp6 (circLRP6) has been of interest due to its active role in cell differentiation, but its potential role in cementoblast differentiation remains unclear. Herein, we attempted to elucidate the role of circLRP6 in cementoblast differentiation and clarify any associated mechanisms. The mRNA expressions of circLRP6, miR-145a-5p, zinc finger E-box binding homeobox 2 (Zeb2), runt-related transcription factor 2 (Runx2), osteopontin (Opn), and bone sialoprotein (Bsp) were evaluated by qRT-PCR. The protein levels of Zeb2 were measured by Western blot. Bioinformatic analysis and dual-luciferase reporter assays were used to test the potential binding targets of miR-145a-5p. The differentiation potentials of the cementoblasts were assessed by Alkaline phosphatase (ALP) staining, ALP activity assay, Alizarin red S (ARS) staining, and quantification. In this study, circLRP6 was significantly upregulated in cementoblast differentiation. Furthermore, circLRP6 knockdown inhibited ALP levels, reduced calcium nodule formation and the expression of Runx2, Opn, and Bsp. Mechanically, bioinformatic analysis and dual-luciferase reporter assays confirmed miR-145a-5p was a potential binding target of circLRP6. miR-145a-5p can negatively regulate cementoblast differentiation. Subsequently, bioinformatic analysis and dual-luciferase reporter assays confirmed Zeb2 was a potential miR-145a-5p target. miR-145a-5p overexpression resulted in a downregulation of Zeb2. Furthermore, Zeb2 inhibition partially reversed the effect of circLRP6 during cementoblast differentiation. Taken together, circLRP6 appears to modulate cementoblast differentiation by antagonizing the function of miR-145a-5p, thereby increasing Zeb2. This study serves as a stepping stone for the potential development of an approach to promote cementum formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.