Abstract

Circular RNA (circRNA) plays an important role in the regulation of multiple biological processes. However, circRNA profiling and the potential biological role of circRNA in influenza A virus (IAV)-induced lung injury have not been investigated. In the present study, circRNA expression profiles in lung tissues from mice with and without IAV-induced lung injury were analyzed using high-throughput sequencing, and differentially expressed circRNAs were verified by quantitative PCR. The gene homology of candidate circRNAs was investigated and the expression of plasma circRNAs from patients with IAV-induced acute respiratory distress syndrome (ARDS) was detected. The target microRNAs (miRNAs) of circRNAs were predicted. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. In total, 781 circRNAs were differentially expressed between ARDS mice and control (467 were up-regulated and 314 were down-regulated). Moreover, the candidate circRNAs (Slco3a1, Nfatc2, Wdr33, and Dmd) expression showed the same trend with the sequencing results. The isoforms of circRNA Slco3a1 and Wdr33 were highly conserved between humans and mice. Plasma circRNA Slco3a1 and Wdr33 presented differential expression in patients with IAV-induced ARDS compared to control. The circRNA-miRNA interaction network and GO and KEGG analyses indicated the potential biological role of circRNAs in the development of IAV-induced lung injury. Taken together, a large number of differentially expressed circRNAs were identified in our study. CircRNA Slco3a1 and Wdr33 had significantly different expression in specimens from mice and humans, and showed a potential biological role in IAV-induced lung injury by bioinformatics analysis.Electronic supplementary materialThe online version contains supplementary material available at 10.1007/s12038-021-00152-8.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.